









### JPL's Mission



- JPL is an operating division of the California Institute of Technology & is a Federally Funded Research & Development Center (FFRDC)
- JPL's primary mission, performed under contact to NASA, is the robotic exploration of the solar system; for example
  - Mars Scouts 2007, Mars Reconnaissance Orbiter, Mars Exploration Rover,
     Mars Odyssey, Mars Global Surveyor
  - Deep Impact, Dawn, Stardust, Genesis
  - Galileo, Cassini, Ulysses, Voyager
- JPL also has significant involvement with NASA programs in Earth Sciences & Astrophysics
  - TOPEX/Poseidon, Jason, Jason 2, GRACE, CloudSAT
  - NSCAT, QuikSCAT, SeaWinds, MLS, MISR, AIRS, TES
  - SIR-C, SRTM
  - SIM, SIRTF, GALEX, WF/PC on HST, IRAS



### Overview of JPL's Products & Processes







## JPL's Thermal Testing Philosophy for Thermal Design Purposes



- JPL uses early thermal development testing in the thermal design evolution cycle to proactively develop robust designs
  - Empirically determine key driving thermal parameters that are difficulty to quantify analytically
  - Understand temperature sensitivity to key boundary conditions
  - Demonstrate proof-of-concept
- System thermal testing serves multiple objectives
  - Empirically validate system-level thermal design for thermally extreme conditions
  - Validate flight system functionality under flight-like environmental conditions
    - Include verification of flight thermal hardware such as electrical heaters with mechanical thermostats, temperature sensors, heat pipes, etc.
  - Gather test data for analytical thermal model correlation
    - Calibrated tool for "Verification by Analysis"



## JPL's Thermal Testing Philosophy for Hardware Products



- JPL uses protoflight (PF)/qualification (QUAL) to uncover workmanship defects & vulnerable design features
  - Interplanetary flight systems require high reliability since their inflight duration may be several years
  - These types of missions experience minimal thermal cycling
    - Thermal cycles are limited on flight hardware to 33% of expected ground + flight
    - Dwell times at hot or cold soak test cases protracted to ensure reliability
  - Earth-orbiting & Mars-surface missions experience more pronounced thermal cycling
    - Hardware packaging must demonstrate life cycling to 3 times expected flight (packaging verification qualification)
    - Non-compliance requires a Project waiver
      - One-time or limited use items (e.g., deployment mechanisms)
  - Typically, these tests are conducted in vacuum (< 10<sup>-5</sup> torr)
- Flight acceptance (FA) testing used to certify hardware whose design has undergone QUAL testing



## **JPL Governing Thermal Testing Documents**



| TYPE OF THERMAL TEST | GOVERNING DOCUMENT                                 | INTERNAL JPL<br>DOCUMENT ID |
|----------------------|----------------------------------------------------|-----------------------------|
| System or Flight     | System Thermal Testing Standard                    | 58172                       |
| Assembly Level       | Design Product Systems Process                     | 57354                       |
| Thermal Balance      | <b>Environmental Testing Procedure, Revision 3</b> | 33832                       |
| Flight Assembly      | Assembly and Subsystem Level                       |                             |
| PF/QUA/FA            | Environmental Verification Standard                | 60133                       |
|                      | Develop Hardware Products Process                  | 57752                       |
|                      | Environmental Testing Procedure, Revision 3        | 33832                       |
| Thermal              | Thermal Engineering and Flight System              |                             |
| Development          | Thermal Control Procedure, Revision 1              | 33014                       |
| •                    | Environmental Testing Procedure, Revision 3        | 33832                       |



## **Typical Thermal Testing Flow**



Thermal Test Discussion Panel

PDR CDR ATLO START FS SHIP LAUNCH

THERMAL DEVELOPMENT TESTING

SYSTEM THERMAL TESTING

ASSEMBLY PF/QUAL/FA TESTING



## **Environmental Requirements Are Mission-Unique**



- JPL Design Principles recommend specific temperature margins & thermal cycling
- Each project develops an "Environmental Requirements Document (ERD)"
  - Captures Design Principles as the baseline
  - Provides for tailoring based on such criteria as critical functionality
     & lifetime
  - Prescribes mission-unique specifications for temperature margin between allowable flight temperature (AFT) & test levels (PF/QUAL/FA), PF/QUAL/FA dwell times, & number of thermal cycles



## Thermal Design Validation Considerations (1/3)



- System-level thermal testing enables validation of flight thermal hardware
  - Primary & secondary heater strings including thermostats, if any
  - Heater power margin
    - General guideline is a maximum 75% duty cycle in the worst-cold case
  - Temperature sensor measurements comparison to test thermocouple readings
  - Heat pipe/CPL start-up
- Steady-state criteria
  - Each flight system responds differently
  - Prescribing a temperature rate of change or heat flow criteria is arbitrary without incorporating specific thermal characteristics
  - While JPL specifies a temperature rate of change, steady-state determination is left to the discretion of the test conductor
    - If the steady-state temperatures can be credibly extrapolated from test data, then a test case can be considered "steady"



# Thermal Design Validation Considerations (2/3)



| Test                 | Thermal                            | System or Flight Assembly          |
|----------------------|------------------------------------|------------------------------------|
| Characteristic       | Development                        | Thermal Balance                    |
| Number of            | Not applicable if no               | Minimized since thermal cycling    |
| Thermal Cycles       | flight hardware used               | is considered a limited &          |
|                      |                                    | consumable resource                |
| Dwell                | Sufficient for steady-             | Sufficient for steady-state        |
| Time                 | state determination                | determination                      |
| Tomporaturo          | Allowable flight                   | Allowable flight temperature       |
| Temperature<br>Range | Allowable flight temperature (AFT) | Allowable flight temperature (AFT) |



# Thermal Design Validation Considerations (3/3)



| Test<br>Characteristic  | Thermal<br>Development                                                                         | System or Flight Assembly Thermal Balance                                         |
|-------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Temperature<br>Extremes | Not to exceed a known material limit and/or safe condition if no flight hardware used          | Not to exceed FA                                                                  |
| Transition<br>Rate      | Not to exceed a known<br>material limit and/or<br>safe condition if no<br>flight hardware used | Not to exceed a safe hardware condition; Limiting items included optics (<8°C/hr) |
| Thermal<br>Stability    | <0.3°C for 3 consecutive hours or at discretion of cognizant test conductor                    | <0.3°C for 3 consecutive hours<br>or at discretion of cognizant te<br>conductor   |



## **Hardware Certification Considerations**



| Test<br>Characteristic      | Flight Assembly PF/QUAL/FA                                                                                   | Test<br>Characteristic  | Flight Assembly PF/QUAL/FA                                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|
| Number of<br>Thermal Cycles | Fight assemblies: Typically 3 to 10 cycles Packaging: 3 times worst-case flight                              | Temperature<br>Extremes | PF/QUAL: AFT - 15°C<br>to AFT + 20°C<br>(Electronics shall<br>minimally be -35 to<br>+75°C)      |
| Dwell<br>Time               | Tailored on a unique<br>Project basis,<br>Typically 144 hours<br>HOT & 24 hours COLD                         | Transition<br>Rate      | FA: AFT ± 5°C  Not to exceed a safe hardware condition;  Limiting items include optics (<8°C/hr) |
| Temperature<br>Range        | PF/QUAL: AFT - 15°C<br>to AFT + 20°C<br>(Electronics shall<br>minimally be -35 to<br>+75°C)<br>FA: AFT ± 5°C | Thermal<br>Stability    | <0.3°C for 3 consecutive hours or at discretion of cognizant test conductor                      |



### **Thermal Balance Test Profile**



#### Thermal Test Discussion Panel

#### Cassini STV Test Phase 1 Event Timeline



| Event No. | Description                       |
|-----------|-----------------------------------|
|           |                                   |
| 1         | S/C Baseline Test                 |
| 2         | Close Chamber                     |
| 3         | Nitrogen Flush                    |
|           | Start Cooling Shrouds             |
| 4         | Turn OFF Purge                    |
| 5         | Configure Power for Case 1A       |
| 6         | Turn off Heaters TBD for Cooldown |
| ·         | Acceleration                      |
| 7         | Configure Power for Case 1B       |
| 8         | CIRS Interference Test            |
| 9         | CAPS HV Test                      |
| 10        | CDA Interference Test             |
| 11        | ISS Interference Test             |
| 12        | Radar 30 minute Turn-ON           |
| 13        | RWA 30 minute Turn-ON             |
| 14        | Turn on Heaters for warm-up       |
|           | acceleration                      |
| 15        | Configure Power for Case 1C       |
| 16        | CIRS, VIMS & ISS Functional Tests |
| ı '       | and CIRS Microphonics Test        |
| 17        |                                   |
|           | Configure Power for Backfill      |
| 18        | turn ON Purge                     |



## MER IPA SN001 PF Thermal Vacuum Test Profile







### **Case Study – Electronics Box**



Thermal Test Discussion Panel

- An externally mounted power distribution box (PDB)
  - Nominal power dissipation: 36 watts
  - Safe mode power: 8 watts
  - AFT limits:

Op: -20 to 45°C

Survival: -20 to 50°C

- Predicted temperature range:
  - -5 to 34°C for a 5-year low-earth orbit mission (EOL optical properties & dissipation)
- Requires thermostatic heaters to maintain PDB at or above –15°C
  - Thermostat setpoints: -15 & -5C
  - Powered on survival bus operating between 24 & 32V





## **Thermal Design Assumptions**



Thermal Test Discussion Panel

Primary & backup survival heater strings that have both power switches enabled

Primary & backup thermostats setpoints staggered

Radiator area probably needed, provisions in place to permit easy area modification

No heat flow allowed through mounting I/F

AFT limits apply to the bulk average temperature



Insulation covers entire unit except for radiator area

Heater power < 24W (current draw < 1 amp, only series thermostats required)



## **Hardware Design Assumptions (1/2)**



- Assume PF test program
  - PF operating test levels: -35 (cold) & 70°C (hot)
    - Driven outside –15/+20°C margin to meet minimum of –35 to 70°C
    - 3 to 10 thermal cycles
    - Dwell cumulative 24 hrs cold & 144 hrs hot
    - Assume a temperature ramp rate of 120°C/hr is acceptable
  - PF survival test levels: no cold test required, covered by operational test
    - Unit "turn-on" at non-operating levels captured by PF operating test
  - Assume hardware can fit into 3-foot diameter thermal vacuum chamber
- Assume electronics packaging qualification successful
  - Assume 2 cycles a day for 5 years = 3650 flight cycles
  - Assume ground testing adds additional 6 thermal cycles
  - 3 times life = 10,968 thermal cycles



## **Hardware Design Assumptions (2/2)**







### **PF Testing**



- PF testing accomplished by mounting flight hardware to a heat exchanger & using chamber shroud
  - PDB will be covered with a test thermal blanket
- If multiple units were fabricated (i.e., flight spare), these units could be tested to FA levels upon concurrence from QA
  - FA operating levels: -25 to 50°C
  - FA dwell times: 24 hrs cold & 50 hrs hot
  - FA number of thermal cycles: probably 3





## **System Thermal Test (1/2)**



- Validate PDB power dissipation
  - Obtain copy of Hardware Requirements & Certification Review (HRCR) power sheet
  - Verify power dissipation with PDB ATLO engineer
- Establish extreme thermal test conditions
  - Internal power & external environment
- Determine if any special PDB tests are required
  - Primary & secondary heater string validation
  - Consider power sensitivity for radiator sizing
  - Empirical data for verification by analysis
- Determine if PDB needs a test heater
  - EOL heat load simulation
  - Acceleration, warm-up, fail-safe and/or special test requirements
- Determine PDB test instrumentation locations



## **System Thermal Test (2/2)**



- Establish test yellow & red alarms
  - Yellow: AFT limits
  - Red: FA levels
- Understand & accommodate ATLO's functional test needs for the PDB
  - Review end-to-end functionality V & V rather than focusing on temperature requirements
  - Determine need for any special test targets or support equipment
- Develop contingency plans in the event the design is deficient



### References



- Siebes, G. "System Thermal Testing Standard," Internal JPL Document D-22011, March 15, 2002.
- Yarnell, N. "Design, Verification/Validation and Operations Principles for Flight Systems," Section 4.8.2.1, Thermal Control Design Margin, Internal JPL Document D-17868, March 3, 2003.
- Greenfield, M. "A Guide for Temperature Control Engineers on Planning, Instrumentation, and Thermal Testing Activities for Spacecraft Level Solar Thermal Vacuum (STV) Tests," Section 3.0, Instrumentation Planning, Internal JPL Document D-7626, April 1990.
- Gilmore, D. (editor) Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies, American Institute of Aeronautics and Astronautics, Inc., Reston, VA, Chapter 19, Thermal Testing, 2002.